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Porous-elastic system with boundary
dissipation of fractional derivative type

WILSON OLIVEIRA, SEBASTIAO CORDEIRO,
CARLOS RAPOSO*, ANDERSON CAMPELO

ABsTRACT. This paper deals with the solution and asymptotic analysis
for a porous-elastic system with two dynamic control boundary condi-
tions of fractional derivative type. We consider an augmented model.
The energy function is presented, and the dissipative property of the
system is established. We use the semigroup theory. The existence
and uniqueness of the solution are obtained by applying the well-known
Lumer-Phillips Theorem. We present two results for the asymptotic be-
havior: Strong stability of the Cp-semigroup associated with the system
using Arendt-Batty and Lyubich-Vi’s general criterion and polynomial
stability applying Borichev-Tomilov’s Theorem.

1. INTRODUCTION

This manuscript is concerned with the one-dimensional linear equations
of a homogeneous and isotropic porous elastic solid with fractional dissipa-
tion. The theory of elastic solids with voids was established by Cowin and
Nunziato |9, 10,22] as an extension of classical elasticity theory that allows
the treatment of porous solids with elastic materials that have good physical
properties.

Denoting by w and ¢ the displacement of the solid elastic material and
the volume fraction, respectively. In the one-dimensional case, the evolution
equations are

PUtt = T,
Jou = Hy + G,

where, T is the stress tensor, H is the equilibrated stress, G is the equi-
librated body force. J = pk where p is the mass density and k is the
equilibrated inertia, that are assumed positives.

(1)
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The constitutive equations are

T = pug + b,
(2) H = 0¢,,
G = —bu, —&¢.

The constitutive coefficients satisfy the conditions
>0, b>0, §>0, £>0, and b* < pué.

Since b < pé we have

2
(3)  plug|* + 2buge + €|9)* = (\ﬁgum + \/EQZ)) + ( — b;) lug|> > 0.

Introducing the constitutive equations (2) into the evolution equations
(1), we get the system

PUy — gy —bdy =0 in (0, L) x (0, 00),
J¢tt—6¢xx+bug;+§¢:o n (O,L) X (0,00)
By using (3), the energy of the system is defined by

(4)

1 L
B =5 [ [ohul® + 100 + 8100 + s+ 20 + €[] do-

d
A direct calculation leads to %E(t) = 0, and then, the system (4) is
conservative. We must have a model for realistic situations where energy
d
decreases in time, that is, — F(t) < 0. For this purpose, we consider two

dynamic controls of the fractional derivative type in the boundary conditions
that act as dissipative mechanisms, given by

(5) U(O,t) = ¢(07t) =0, in <O7OO)7
(6) uz(L,t) = =10 "u(L,t) in (0,4+00), n =0, 0 < <1,
(7) Gz (L,t) = —720y""¢(L,t) in (0,+0), n >0, 0 <a <1,

where 7; > 0, i = 1,2. The notation 9;"" represents the generalized frac-
tional derivative of the Caputo type of order a, 0 < a < 1, n > 0.
We take initial data as

(8) { (U(J},O),¢(l’,0)) = (Uo(l’),¢0($)), in (OvL)a
(ue(,0), (2, 0)) = (w1 (x), ¢1(x)), in (0, L),

where (ug, u1, ¢o, ¢1) belong to a suitable functional space that will be de-
fined later.

There are many definitions for fractional derivatives [11], among which
Riemann-Liouville’s and Caputo’s definitions are most widely used [20]. A
new definition of fractional derivative with a smooth kernel which takes on
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two different representations for the temporal and spatial variable was given
Caputo-Fabrizio [7]. The Caputo-Fabrizio fractional integral of order a,
0 < a < 1, is defined by

1 t
I*w(t) = / (t — s)* tw(s)ds,
L) Jo
where T is the well-known gamma function, w € L'(0, L) and ¢ > 0.
The Caputo fractional derivative operator of order « is defined by

1

D%w(t) = I'"*Dw(t) := F(l—a)/o (t—s)

% sy,
with w € W1(0,L) and t > 0.

In this work, we consider the definition of fractional integro-differential
operators with weight exponential, see Choi and MacCamy [8].

Let 0 < a < 1, 7 > 0. The exponential fractional integral of order « is
defined by

(9) [I%Mw](t) = ! ) / t(t—f)a—le—w—ﬂw(f)da w e LY0,L), t > 0.
0

N
The exponential fractional derivative operator of order « is defined by
1 t dw
0w (t) = / t—s) % =9 22 (5)ds,
we WhH(0,L), t > 0.
From (9) and (10), we deduce
(11) 7 Mw(t) = (1% '] (2).

The theory of porous elasticity is used in engineering, such as vehicles,
airplanes, and space structures, and attracts the attention of researchers.
See, for instance, [13,14,16,25,26].

Quintanilla [28] considered the following system

PU — gy — by = 0 in (0, L) x (0, 00),
Jor — Obzg + bug + £+ 7 = 0 in (0, L) x (0, 00).

Note that in (12) the control is given by the frictional damping 7¢¢, 7 > 0.
He used Hurtwitz theorem to prove that the frictional damping through
porousviscosity is not strong enough to obtain an exponential decay but
only a slow decay.

Apalara [2] studied the following problem

(12)

PU — gy — by = 0 in (0,1) x (0, 00),

t
Jorr — 0pr + by + EP + / g(t — 8)pgz(x,8)ds = 0in (0,1) x (0, 00),
0
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and proved that the unique dissipation given by the memory term is strong
enough to exponentially stabilize the system, depending on the kernel g of
the memory term and the wave speeds of the system.

the porous-elastic system with microtemperature is considered in [3]. An
one-dimensional porous-elastic system with thermoelasticity of type I1I was
investigated in [19]. Asymptotic behavior for a porous-elastic system with
fractional derivative-type internal dissipation was analized in [23]. Expo-
nential stability for a porous elastic system with fractional damping and
fractional-order time delay was studied in [24].

In Section 2 the augmented model is presented. In Section 3 we intro-
duce the energy functional and establish the dissipativity property of the
system. In Section 4 we obtain the existence and uniqueness theorem for
the augmented model by using the semigroup theory of linear operators. In
section 5, by using general criteria due to Arendt-Batty and Lyubich-Vi,
we prove the strong stability of the Cp-semigroup associated with the aug-
mented model. In section 6, by using the Borichev-Tomilov Theorem, we
show the polynomial stability.

2. AUGMENTED MODEL
Proposition 1 (See [21]). Let w be a function

200—1
wy) =yl 2, ye(-o00,+x), 0<a<l.

Then, the relation between the Input U and the Output O of the following
system

et(y,t) + y2e(y,t) + ne(y,t) —U)w(y) =0, 1 =0, t >0,

(y,0) =0,
+oo
ot = [ el
sin(ar) 1 o
where v = = T = a) and U € C([0, +00)), is given by

O(t) = I'™™"U(t) = D™ "U(t).

The strategy is the elimination of the fractional derivatives in time. To
achieve this, we exploit the technique from [17]. Applying Proposition 1
with U(t) = uy(L,t) and taking into account (11), we deduce

v/oo w(y)e(y,t) dy = O(t)

—0o0
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Now, by using

7/00 w(y)p(y,t) dy = 0;""u(L, 1)

we reformulate system (4)—(8) into the augmented model with n > 0, ¢ > 0,
puy — Pgy — by =0 in  (0,L) x (0,00),

e1e(y:t) + [° +nler(y,t) — w(L, thw(y) =0, y € (00, +00),

Joi — 0bge +buz + =0 in (0,L) x (0,00),

2y t) + [y* + nlea(y,t) — du(L,hw(y) = 0, y € (—o00,+00),
(u(z,0), ¢(x,0)) = (uo(z), ¢o(z)), in (0,L),

(Ut(.%’,O),¢t(ZC,O)) = (ul(x)agbl(x))a in (OaL)> (P)
u(0,t) = ¢(0,£) =0, in (0,00),

—+o0
wa(Lt) = —C / w()er(y, Oy, Ci =17,

—00

“+oo
¢z (L, 1) = —Cz/ w(y)p2(y, t)dy, Ca = 27,
s01(y,0) = 902(y70) = Oa (S (_OO7+OO)'

3. ENERGY OF THE SYSTEM

This section will show that the energy functional E(t) associated with the
augmented system (P) is dissipative.

Lemma 1. If A € D, = C\] — 00, —1)| then

_ +oo /’1‘2(6) _ ™ T—1
Fl()\)_/_oo )\+77+£2d5_sin(7'7r)()\+77) ’

+oo 2 T
R0 = [ Gt =0T,

o too M2(§) _ (1—7’)(2—7’)-"(7’L—1—T> T—n
O o OIS RO
Proof. See [18], Lemma 2.1. O

Lemma 2. If A € D = C\] — oo, —n] then

e W (y) m a1
/_oo Nt Pl Sin(om)(A T

Proof. See [5], page 4. O
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Lemma 3. Let 0 < a <1, n >0, then the following integral

( ) +oo ‘y’2a71 J
Iy (n, o :/ Pa—— ]
o LN +Y?

1s well-defined.

Proof. First, I5(n, ) can be written as

1 y2a—1 +o0 y2a—1
Lna)=2] —L 4 +2/ S —

We have
2a—1 2c—1 2c—1

Y Y Y 1
~ and ——— ~ ———.
1+n+y?2 o 1+ 1+n+y? +oo g320
Since 0 < o < 1, then I5(n, «) is well-defined. O

Lemma 4. Let 0 < o < 1, n = 0, and f3(x,y), fe(z,y) € L2<(O,L) X
(—oo,—i—oo)). Assume that (n >0 and X €R) or (np=0 and X € R*),
then the following integrals

“+o00 2 “+o0o 2
II(A,n,oo:m/ W) g, w,n,a):/ w(9)

- . o . %dj
oo AT Y+ _Ooz)\+y2+77y

Tw(y) fs(z,y) w(y) fo(z,y)
I A = e P dy, A = ZATJIONT T
3(f37 ,7’],0&) ’7/_00 Z)\+y2+77 Y, 4(f67 ,7],0&) /7/_00 Z)\+y2+77 )
are well-defined.
Proof. See [15], page 13. O

The energy E(t) associated with the augmented system (P) is defined by

L L
J
B0 = [ uPdoty [oPds
0 0

2
L 5 L L L
+’“‘/ |u$]2dx+/ @\Qdm—i—b/ u$¢dx+5/ |p|*da
2 Jo 2 Jo 0 2 Jo
C, [t 5Cy [t
I [ ey + 20 [ et Py

Proposition 2. The energy E(t) satisfies

—+o00
GEO =40 [P+ nller 0Py
(13) o

400 ) )
e} / 2 + mllos(y, £) 2y < 0.

—00
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Proof. Multiplying (P); by u:, (P)s by ¢; and performing integration on
(0, L) we get

pd [F L L
t J; ; ;
Jd [t o, L L L
(15) S [ |:lPdz =6 | uadpdr+b | upgrdr+& | ddidr = 0.
0 0 0 0

Adding (14) and (15), integrating by parts, and using the boundary con-
ditions we get

1d [F
th/o [plue + plug|? + J|¢e* + 6 ¢a|* + 2buzd + €|6|?] da

+o0
(16) = —pCruy(L.t) / w(y)er (. D)y

—00
“+o00

— 5Can(L, ) / w(y)ea(y, )dy.

—0o0

Multiplying (P)2 by uCie1, (P)4 by dCa¢9 respectively, and integrating
on (—o0,4+00), we get

1d +oo ) “+o00 )
2% pCile1(y, t)|*dy = —pCy [y° 4+ nle1(y, t)erdy
(17) >
+uCy / ug (L, t)w(y)p1dy,
1 d +oo 2 too 2
5dl 0Cs|pa(y, t)|*dy = —6Cy [y* + n]p2(y, t)p2dy
— 00 —00
(18) >
+0Cy Ot (L, t)w(y)pady.
Adding (17) and (18) we obtain
1d —+o0 5 1d —+o00 )
sdi | pCilei(y, t)| dy+ 5 - 6Cs|pa(y, t)]| dy
+oo 9 +oo
(19) = —MCl/ ly +n]s01(y,t)<p1dy+u01/ ut(L, t)w(y)p1dy

+00 +oo
—6Cy / [y? + nle2(y, t)pady + 6Cy ¢e(L, t)w(y)pady.

—00 —0o0
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Finally, adding (16)—(19) and using the energy E(t), we obtain

d +o0
th( ) = _.UCI/ [y* + nler(y, t)p1dy
+00 5
—6Cs / [y + nle2(y, t)pady. O

4. EXISTENCE AND UNIQUENESS OF SOLUTION

In this section, we study the well-posedness of the system (P) using the
semigroup theory of linear operators.

4.1. Semigroup set up. Let U = (u,fu,gpl,gb,w,(pg)T where v = u; and
1 = ¢;. The system (P) can be written as

(20) AU =0
U(0) = (uo, u1, 91,0, 0, Y1, 92,0) 7

where the operator A : D(A) C H — H is given by

v
—(* + )1 +v(L, w(y)
(21) AU =
(0
5 b ¢
j¢zx - jux - j(b

=2+ n)p2 + (L, hw(y),
with domain
( u, ¢ € H*(0,L)NHL(0,L), v, ¢ € H}(0,L),
(y)

_(y +77)801 +U(Lat) S L2( OO,+OO),

w(y
—(y* +n)e2 + (L, t)w(y) € L*(—o00,+00),
up(L,t) + C1 [T w(y)er(y, t)dy =0,
da(Lyt) + Co [ w(y)pa(y, t)dy = 0

lyler, |yle2 € L (—o0, +00),

DA =UeH

and phase space
H = (H}(0,L) x L3(0, L) x L*(~o00, +00))’,
where H1(0,L) = {p € H*(0,L); ¢(0) = 0}.
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Remark 1. The condition |y|¢1, |ylp2 € L? (—o00, +00) is imposed to insure
the existence

+00 +oo
/ W2 + 11 ()Pdy  and / 2 + loa(y) Pdy

— 50 —o0
in (13), respectively. In addition to the existence of
+o00 +o00
/ w(y)ei(y)dy and / w(y)e2(y)dy
—00 —o0o

in (P); and (P)s, respectively (for more details, see Lemma B.1 in [1]).

Clearly, D(A) is dense in H. Let

U= (ua v, L1, d)v ¢, 902)Ta U = (ﬂv v,¢1, 67 aa @)T € H.
The inner product in H is defined by

L
0

—+o00 —+oo
+ pCh / p191dy + 6Co / P2pady.

— 00 —00

We have
L
(U,U)y = /0 [p|v]? + J[0]? + plug|® + 8|¢a|? + 2bug g + €| @] da
(22) - -
+u01/ |<p1|2dy+502/ pa|*dy,

—00 —00

Note that
(23)  pelual® + 266upd + 17 = (1€ — ) |ual + |bua + £ > 0,
therefore, (22) defines a norm on H, that is,
1013 = (U, U

Let U = (u,v, p1,¢,%,02)" € D(A). A straight-right computation leads
to

2) (AU, U =~ |

—0o0

+oo +oo

(y* +n)pidy — 502/ (y* +n)p3dy <0,

—00

and we conclude that A is a dissipative operator on H.

4.2. well-posed. Our goal now is to solve the system (20). We use the
Lumer-Phillips Theorem (See, Pazy |27]) to prove that A is the infinitesimal
generator of a Cp-semigroup of contractions on H.
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Theorem 1. The operator A, defined in (21), is the infinitesimal generator
of a Cy-semigroup of contractions {S(t); t >0} on H.

Proof. Since A is densely defined and dissipative, it remains to prove that
A is maximal. Given F = (f1, f2, f3, f1, f5, f6)© € H, consider the resolvent
equation

(25) (I— AU =F.

We need to show that the solution U = (u,v, @1, ¢, %, p2)T € H of (25) is
in D(A). The resolvent equation leads to

(26) u—v=f; € H(0,L),
b
(27) v %u ~oor =1 € IP(0,L),
(28) o1+ (2 +n)p1 —v(L)w(y) = f3 € L* (—o0, +00),
(29) ¢—=fi € H(0,L),
(30) V= Dbt uet S = f5 € 170,1),
(31) w2+ (17 +n)pa — w(L)w(y) = fo € L (o0, +00).
From (26) and (29) we get
v=u-— fi,

(32)

{w —6—fu.

Of course v, € H}(0,L). Besides this, by (28) and (31), we can find
pi (i=1,2) as

o = f3(y) + v(L)w(y)
v4+n+1

fo(y) + ¢¥(L)w(y)
v +n+1

(33)

P2 =

Replacing (32) in (33), we obtain
ul)wly) | fsy) = Hl)w(y)

Y1 =

(34) P+t v +n+1
oy = oL)wly) | foly) = fill)w(y)
T2+l y2+n+1

Using (32) in (27) and (30), the functions v and ¢ satisfy the following
System

{ pU — ptigy — by = p(f1 + f2),
(35)

JO = 6¢ua + buy + &b = J(fa + f5).
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Solve

the systems (35) is equivalent to finding

(u, ) € (H2(0,L) N H}(0,L))°,

such that

( L L L
p [ e / usexde —b [ gz = o / (i + fo)xde,
0

(36) / ¢Cdx — § / GuaCdr+
L
b | upcd do = da,
" / 0. x+s/ ocde =1 [ (1i+ )¢
for all (x,¢) € H}(0,L) x H}(0,L). Performing by integration by parts,

using the boundary conditions and using (34), it follows from (36) that the
functions v and ¢ satisfy the following system

(37)

where

Ci

L L L
p/ uxdz + Cru(L)x (L) + u/ Up XzdT + b oxzdr =
0 0 0

o w(y)
o YrAn+1

L
p / (fi + fo)xdz — pCax(L) / Fa(y)dy + Cofi (D)D)
0

L B L L L
J/OL(b{dx-l—C’sz(L)C(L)—f—é/o qu{xdx—i—b/o UxCd5U+f/0 oCdxr =

J /O (s + f3)Cdx — 5CuC(L) [ :o Mfe(mdy + Cofu(D)(D).

+oo 2 5 +o00 2
e / _ W) g and Gy = 60 / wy)

oo Y2 H1 oo Y2+

By (23) we have that

pE|ug|? + 2b€uz ¢ + €2 > 0.

We consider Hg(0,L) x HZ(0, L) with the norm

L L L
|, $)|1% = €p /0 ful?de + €5 /0 g Pl + 26D /0 dupda

L L L
2 2 2 2
+5J/0 191 d:n+§5/0 ™ d:c+£/0 62 dx
G (D) + ECa (D).
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Adding the equations of the system (37), we construct a variational prob-
lem

(38)  B((u,0), (x:¢)) = L((x; ), V(x.¢) € H(0,L) x HL(0,L),
where
B: [H}(0,L) x H{(0,L)]* — C
is a sesquilinear, continuous and coercive form, and
L:H}(0,L)x H(0,L) — C

linear and continuous, given by

L L L
B((u.9), (x.0)) = &p /0 uxdz + €u /0 waxadz + € /0 dxadz
L L L
—l—fJ/O gb(dx—i—fé/o qugxdx-i-fb/o uz(dr

L
e /0 6Cdz + €Cru(L)x(L) + ECao(L)C(L)

and

L
L((x.0) = £ /0 (1 + fa)xdz — pCix(L) /_ yzi(fﬂlfg(mdy

—+00

L
L ECL (LX) + €7 /O (f1+ f5)Cda

+oo

- eoC(n) [ W) p)dy + €Gofu(L)C(D).

oo Y2 +1

Thus, applying the Lax-Milgram Lemma, we obtain the existence and
uniqueness of solution (u,$) € Hi(0,L) x HL(0,L) of the problem (38),
for all (x,¢) € H(0,L) x HE(0,L). From (32), we get v, ¢ € H}(0,L).
In order to complete the existence of U € D(A), we need to prove ¢; and
lylpi € L? (=00, +0), i =1,2.

To do this, using (26), (28) and the fact that n > 0, we get

Zocl 2a-1
(39) o1(y) = f3(y) wD)yl "2 A@)y] 2

S l+yi4n o 1+yi4o 1+y2+n

From (39), we get

+o00 +oo 2
2 | f3(y)]
dy <3 —d
/_oo 1) dy /_OO (14+y%2+n)? Y

+3(umP + AP [

—eo (L+92+1m)?

+oo |y’2a—1 dy
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Using Lemma 3, it easy to observe that

+oo ’y‘Zafl +o00o ’y‘2a71
5 5y < / ——5——dy < Ix(n,a) < +oo,
/_oo (1 +y%+n)? o LY+

that is,
+o0 ‘20471

(WP + 1A @P) [ ly dy

oo (472 +m)?
< Iz (n, ) ([u(L)? + [ f(L)]?) < oo
On the other hand, using the fact that f3 € L? (—o00, +00), we obtain

o | py)? Lo
/_oo T+t 2 S T2 /_oo F3(w)[dy < co.

It follows that ¢ € L? (—o00, +00). Next, using (39), we get
+o0 too ) )
/ lyer [Pdy < 3/ yIsWE

e oo (T+ 92+ n)2
6P+ AP [
0 (1+y%2+n)?
Since
y2a+1 y26¥+1 y20¢+1 1

T~ d —F - ~ ——
(Trn+ty)? o @+m? 0 Trg+yP? 4% yio

+00 ‘y|2a+1
Using the fact that 0 < a < 1, we obtain / 5 dy is well-
o (1 ty +n) it
defined and consequently so is (|u(L)|* + fl(L)\Q)/ h %dy.
o (d+y+n)

Now, using the fact that f3 € L? (—o0, +00) and

Y L
max — ’
ye(—oo,+00) (1442 +1)? (1+mn)
we get
e 2 2 2 +oo
T 5 d < max - - d
/oo A2t S e O+ 02 ) | f3(y)|"dy

+oo
< / Fs(y) Py < +oo.

It follows that |y|p1 € L? (—o0, +00). Similarly, it is proved that oo, |y|@2 €
L? (—00,400). In this way, we prove that A is maximal. Consequently, by
the Lumer-Phillips theorem, A is the infinitesimal generator of Cy-semigroup
of contractions on H. O

The existence and uniqueness of solution is given by the following theorem.
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Theorem 2. Defining U(t) = eA*'U(0), by general theory of semigroups of
linear operators, we have

(a) IfU(0) € H, then the system (20) has a unique solution
UeC(R{, H).
(b) IfU(0) € D(A), then the system (20) has a unique strong solution
UeC(Rf, DA)NC (RS, H).

5. STRONG STABILITY

In this section, we use a general Arendt-Batty [4] and Lyubich-V1 [5] cri-
terion to show the strong stability of the Cg-semigroup S(t) = e associated
with the system (P).

Theorem 3. (Stability Theorem: [4], page 837) Let A be the generator of a
bounded Cy-semigroup {S(t)}i>0 over a Hilbert space H. If no eigenvalues of
A lies on the imaginary azis iR and o(A) NiR is countable, then {S(t)}i=0
is asymptotically stable. That is, tlg)oao |S(t)z|l =0 for all z € H.

Lemma 5 (Lax-Milgram-Fredholm, see [12|). Let V and H be Hilbert
spaces such that the embedding V. C H 1is compact and dense. Suppose
thatay : V XV — C and ag : H x H — C are two bounded sesquilinear
forms such that ay s V-coercive and G : V — C is a continuous conjugate
linear form. The equation

ag(u,v) + ay(u,v) = Gv), YveV
has either a unique solution w € V' for all G € V' or has a nontrivial solution
for G=0.
The main result in this section is the following theorem.

A

Theorem 4. The Cy-semigroup S(t) = et is asymptotically stable on H.

For the proof of Theorem 4, according to Theorem 3 of Arendt and Batty,
we need to prove that the operator A has no pure imaginary eigenvalues
and o(A) N iR is countable, where o(A) denotes the spectrum of A. The
argument for Theorem 4 relies on the subsequent lemmas.

Lemma 6. Assume that n > 0. Then, ones has
ker(iA] — A) = {0}, VAeR.

Proof. We will use argument of contradiction. If A has a eigenvalue on the
imaginary axis iR, then there exists a A # 0 and U = (u, v, 1, ¢, %, )" €
‘H such that

(40) AU =i\U, U #0.
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Without loss of generality, we can assume ||Ul|lz = 1. The resolvent
equation (40) leads to

(41) idu—v =0,
b

(42) PAV — Huxm — ¢ =0,
P p

(43) iXp1+ (7 + )1 — v(L)w(y) =0,

(44) iXp — 1) =0,
0 b I3

4 ) - Pz Uy P =Y

(45) A ng —I—Ju —I—qu 0

(46) iXpz + (y° +1)p2 — Y(L)w(y) = 0.

Taking the real part in (40) we get —Re (AU,U),, = 0. Then, by using
(24) we obtain

+oo2 2 +oo2 2
uC{/ (y +nﬂ¢ﬂdy+6cg/ (v~ +n)lp2|"dy,

—00 —0o0

from where follows
(47) 0i=0, i=1,2
Then, from (43) and (46), it follows that
v(L) =¢(L) =0.

From (41), (44) and using (47) under boundary conditions (P)7_g, we
have

(48) (L) = G(L) =0 and ug(L) = du(L) = 0.
It follows from (41)-(42) and (44)-(45) that:
_)\2 — — —
(49) { , A pu — pzy — by =0,
—AJ P — 0y + buy + £ = 0.

Considering X = (u, ¢, uyz, ¢5), we can rewrite (48) and (49) as the fol-
lowing initial value problem

X _ ax,
(50) dzx
X(L) =0,

where

—NJ + ¢

Il
|
(@)
> O [esqE
|
O Tlo~roO
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By Picard’s theorem, the ordinary differential equations of the system
(50) has only one solution X = 0. Therefore, u =0, ¢ =0 = v=1 =0,
ie, U =0. U
Lemma 7. Assume that n = 0. Then, the operator —A is not invertible

and consequently 0 € o(A).

Proof. Set F' = (sin(x),0,0,0,0,0) € H and assume that there exists U =
(u,v, 01, 0,1, p2) € D(A) such that —AU = F, it follows that
200—1
v=—sin(z) in (0,L) and y?p; —sin(L)|y| 2 =0.

From the above equation, we deduce that

2a-5
e1(y) =sin(L)y| 2 # L*(—o0, +00),

therefore the assumption of the existence of U is false and consequently, the
operator —A is not invertible. The proof is thus complete. O

Lemma 8. Assume that (n > 0 and A € R) or (n =0 and X € R*).
Then, we have R(iA — A) = H, where R(iAI — A) denotes the Range of
i — A.

Proof. For F' = (fi, f2, f3, fa, 5, fo)" € M, let U = (u,v, 01,0, 9, 02)" €
D(A) be the solution of

iAU - AU = F.
Equivalently, we have
( iu—v=fi,

PNV — Pge — by = pfa,
idpr + (° + n)pr —o(L)w(y) = fa,
A — Y = fu,

INY — pgg + bug + P = T fs,

(51)

ixp2 + (Y7 + )2 — Y(L)w(y) = fo.
It follows from (51); ¢ that
_ By Aw(y) | idu(L)w(y)
LT RS S N R W R
_ Sy @) | ide(L)w(y)
LIS U SRS WL NS
From (51); — (51), and (51), — (51),, we obtain
{ —pA*U = pitigy — by = p(iNf1 + f2),
—JIN2p — Opyy + bug + E¢ = J(iNf4 + f5).

(52)

(53)
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Solving the system (53) is equivalent to finding
(u, ¢) € (H*(0,L) N HL(0, L))",
such that
L L L L
¥ [Cunde [ Cueindo = [ oode = p [0 + s,
L ’ L ’ L ’ L OL
fJ)\z/ oCdx — (5/ ¢mgdx+b/ uszerf/ oCdr = J/ (tAfa + f5)Cdz,
0 0 0 0 0

for all (y, ¢) € H:(0,L) x Hi(0,L). Using integration by parts and using
(52) in (54), the functions u and ¢ satisfy the following system

(54)

L " ’
— pA? /0 uxdz + C1(A,n, a)x(L)v(L) + M/O UoXedT + b/() Pxad

L +00
= p/O (iAf1 + fa)xdz — pCrx(L) /ﬂo %J‘s(y)d%

(55) L } L L L
e /0 oCdr + Co(Am, o) (L)L) + 6 /0 buCodi +b /O wpCle 1€ /0 oCdz
e , o wiy)
=7 [Cinti+ force = s0ac(0) [ B0 futay,

where

_ +o00 wQ(y)
Ci(\ 1, @) = pC —————dy,
) =y [y

o\, 1, a) = 5Cs /_:o mdy.
Using again the (51); — (51),, we deduce that
o(L) = iXu(L) — fi(L),
P(L) = iAp(L) — fa(L).

Substituting these equations, respectively, into equations (55), one has

L L L
— p)\2/ uxdx + iNC1(\, n, @)u(L)x(L) + /4/ Uy XzdT + b/ Pxzdx
0 0 0

o w(y)

mf:ﬂ(y)dy +Ci(\m, @) fi(L)x(L),

L
= P/O (iAf1 + fo)xdx — N01X(L)/

—00

L L L L
a2 /0 6Cdz +iACa(\, 1, @)S(L)C(L) + 6 /0 GuCed + b /0 wgClz + € /0 oCdx

L +oo B
=7 [C@it s —ocxw) [ Uy + Con DD

(56)

As a € (0,1) and f3, fg € L?*(—00,400), under the assumptions of the
Lemma, it follows Lema 4 that the improper integrals in (56) above are well

defined.
To solve (56), we distinguish two cases.
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Case 1. n > 0 and A = 0: System (56) becomes

L L
M/ Uz Xz dT + b/ PXzdr =
0 0

+o0o

S )y + a0, ) AN

L
p | fexdx — pCix(L)
(57) /0 /

6/0L¢Zcxdx+b/OLuI{da:+$/OL¢Cda::

+oo

L
7 [ e =00y [ St + Cat0m ) D)

The left hand side of (57) is a bilinear continuous coercive form on
(H}(0,L) x HL(0,L))?, and the right hand side of (57) is a linear con-
tinuous form on Hj(0,L) x Hi(0,L). Using Lax-Milgram theorem, we
deduce that there exists a unique solution (u,$) € H}(0,L) x H;(0,L)
of the variational Problem (57). Hence, by applying the classical ellip-
tic regularity we deduce that System (53) has a unique strong solution
(u,¢) € (H*(0,L) x H}(0,L))%

Case 2. n >0 and X € R*: Note that we can rewrite (56) as
(58) LU, V) +aggi 0,02 (U, V) = U(V),
where the sesquilinear forms

Ly : [L*0,L) x L*(0,L)]* — C,

a0,y * [HL(0, L) x HL(0,L))> — C
and the antilinear form [ : H.(0,L) x HL(0,L) — C are defined by
L ~ ~
IA(U V) =2 [ (pux + 600 = XCU(LIN(E) — G (D)

0

L L L L
Ay 0.0y (U V) = 1 /0 waXad 4 b /0 (6Xe + usQ)d + 8 /0 baCod + € /0 oCd,

and
L

L
(V) =p /O (ML + fo)xda + T /0 (iMfat f5)Cda

+o00
o L
+oo

—oc®) [ U i)y + CADND) + Caf(LK(D)
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One can easily see that Ly, a(yi,ry2 and | are bounded. As well,

from the incorporated compactness of H}(0,L) in L?(0,L) it follows that
H}(0,L) C L*(0, L) compactly and densely. Furthermore

L
ma(Hl(o,L)P(U» U) = M”UxH%? o,1) T 20 (e 5”@:”%2 0r) T fHd’H%? 0,L
L ( ) ) 0 ( ) ) ( ) )

2
= U e (0,12

Thus, A(H(0,1))2 is coercive. Consequently, by Lemma 5, proving the
existence of U solution of (58) reduces to proving that (58) with = 0 has
a notrivial solution. Indeed if there exists U # 0 , such that

LA(U, V) + agga(0,1)2(U, V) =0, ¥V € Hg(0,L) x Hy (0, L).

Then A is an eigenvalue of A.
Therefore, from Lemma 6 we deduce that U = 0. O

Proof of Theorem 4. Using Lemma 6, we have that A has no pure imaginary
eigenvalues. According to Lemmas 7 and 8 and with the help of the closed
graph theorem of Banach, we deduce that o(A) NiR = () if » > 0 and
o(A)NiR = {0} if n = 0. Thus, we get the conclusion by applying Theorem 3
of Arendt and Batty.

The proof of the theorem is complete. O

6. POLYNOMIAL STABILITY (7 # 0)

We will use the following result due to Borichev and Tomilov.

Theorem 5 ([6], Theorem 2.4). Let S(t) = e be a bounded Co—semigroup
on a Hilbert space H with generator A such that iR C p(A). Then, for a
fized B > 0 the following conditions are equivalent:

[GA — Al < CINP, A = 0.

ISOA el < S50t o0, e M,

t B

Our main result is the polynomial stability, given by the following theo-
rem.

Theorem 6. For Uy € D(A), the Co—semigroup S(t) = et is polynomially
stable, that is,

_ 1
1S(t) A Ul < —5—I0ollp(ay, t>0.
t2(1-a)
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Proof. Let’s examine the resolvent equation, (iA\I — A)U = F, for A € R,
where U = (U31)7801»¢7¢,<P2)T € D(A) and F'= (flaf?af37f4>f5vf6)T € %a

V1z

( iu—v=fi,
IAV — Humc - é(ﬁx = fo,
P P

ixp1 + (Y2 4+ 1)1 — v(D)w(y) = f,
iXp — b = fu,

M= S et St 0= g,
Lidp2 + (1 + )2 — Y(L)w(y) = fo.

Taking the inner product in H of the resolvent equation with U gives

(59)

|Re (AU, Uy | < Ul [IEl34-

Using (24), comes

+oo +oo
(60) uCh / (4% + 1) p3dy + 6Cs / (W + M2 W)dy < Ul
—00 —00
or
+oo 5 +oo 5
61)  uCy / Fdy + 5C, / G)dy < CU |l Fllg

and, applying the second triangular inequality to (59); and (59)4, we have
2
[INl(D)] = (D] < (D),

N6~ ()| < ez,
from where we obtain
(62) NPIu(L)? < CADE + Clo(L)
(63) NPIS(L)P < CIA(D)P + Clo(D)P,
and from (59)3, we get

v(L)w(y) = (X +y* + )1 — f3(y).

Multiplying above equation by (i\ + y2 + 1) tw(y) gives

X+ 7 +n) o(D)w?(y) = wy)er — (A + >+ 1) 'w(y) f3(y).
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Now we take the absolute values of both sides of the previous equation,
we integrate over the interval | — oo, +00[ with respect to the variable y and
we apply the Cauchy-Schwarz inequality to obtain

—_

sl <v ([ G +n>|sol|2cz.y>5 ([ h APay) "

where

400
S= / (A + 92 + ) wly)Pdy,

U= (/:o(yz +77)1|w(y)!2dy> :

V= </+Oo(|/\| +y7 + n)QIw(y)l2dy)

N[

D=

—0o0

Thus, using again the inequality 2PQ < P2+ Q%, P >0,Q >0

Su(L)f? < 202 ( / e mrsolr?dy) Loy ( / :° !fs(y)\2dy> .

—0o
We deduce that

(64) (L) < CIAP2NU gl Fllae + CIIF 3,
Similarly to the construction made above, considering (59)4, we have
(65) (L) < CIAP* U Flle + CHF I,
and using the inequalities (64)—(65) in the inequalities (62) and (63), comes
C
(66) (D < = IOl Pl + 0 IR,
(67) D < U lFl+ 1P
In addition, by the boundary conditions and the inequality (60) give us
(68) [ua(L)* < CINU 3l F [l
(69) |6 (L)* < ClU I3l F e

Now, we shall introduce the following notations
Tu(@) = plo(a)* + plus (@),

Ty(a) = I (@)® + 8l¢z()?,
I(e) = Lu(a) + Zy(a),

L L
eu(L) = /0 Tu(s)ds, es(L) = /0 T,(s)ds.
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Lemma 9. Let ¢ € H'(0,L). Then we have

L
(70) Eu(L) = [un]g + 2bR€/ qo uzdr + Ry,
0

: . L L
(71) eg(L) = [qZy]y — & [alo]*], — 2bRe/ qumfbmdwr/ q'|¢|*dx + Ro,
0 0

where R; satisfy
|Ri| < CIUllnllFlla, Vi=1,2,

for a positive constant C.

Proof. To get (70), let’s multiply the equation (59), by ¢ and integrate in
(0, L), which gives us

L L L L
R e A
0 0 0 0

or

L L L L
—p / VqiNugdr — [t / QUgzlUzdr — b / qPzUgdr = p / fequzdz.
0 0 0 0

From (59); we have that i\u, = v, + fig, then taking the real part, the
above equality leads to

L L
P d. o H d 2

- = —|v|*dr — = —(|uz|")d
2 agtoPae =8 [ e (s

L L L
= pRe / foquzdx 4+ pRe / vq fizdx + bRe / Qo uzdx.
0 0 0

Integrating by parts, we have
L

L
/ q'(s) [[v(s)]? + plug(s)?] ds = [¢Z.)5 + 2bRe/ qozuzdr + Ry,
0 0

where . .
Ry = 2pRe/ foquzdx + 2pRe/ vq fizde,
0 0

in this way we can obtain the equality (70) with

L L
Ryl < 2p / Il fol ol + 2 / gllollfraldz < CU ol Fllas
0 0

which proves the first part of the Lemma 9.
Similarly, if we multiply (59); by ¢¢, and integrate in (0, L), we get

L L
z')\J/ wq@dx — 5/ qﬁmq@dm—i—
0 0

L L L
b /0 UoqBade + € /0 bqdadz = J /0 Jsqdade,
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or

Lo L
J /O Ya(iNga)de — 5 /0 (Grodadat

L L L
b /O Quodade + € /O (6Fadz = /0 ofsdadz,

From (59),, it follows that iA¢, = 1, + f1, then taking the real part, the
above equality results in

J [t d 5 (M 1d
5 [Catrar=d [Ty Lo+ S [ o diora
0 0

L L L
= JRe / qfsbrdx + JRe / q fazdr — bRe / qUzdpd.
0 0 0

Integrating by parts, we obtain
L
a6 10 + 816.(5) ] s

L L
L —_
= [qu,]g —£ [q]qb|2]0 - 2bRe/0 qUg Ppdr + &£ ; q/\¢|2d:c + Ry,
where
L L
Ry = JRe/ qfsp.dx + JRe/ QY fazdz.
0 0

This gives us the equality (71) with
L
| Ra| < 2J/0 gl f5||p|da + 2J/ [gl[¥][ fazlde < CIU ][ Fll3. O

Taking ¢ : [0, L] — [0, L] C R given by ¢(z) = « in Lemma 9 and then
adding (70)—(71), we get

eu(L) + e¢(L) = L(Zu(L) + (L)) — EL|p(L)[?
+£/L|¢|2dm+R1 + R,

as |R;| < C|\U||y||F||ln, ¥i=1,2, we have

L
eu(L) + (L) < L(Tu(L) + Ty(L)) + LEIG(L)[> + € /0 162z + CI|U || F 14

=L | p|o(L) +4|ua(L)]® +J [P(L)° +6 |¢2(L)
—— ~— —— ~—
(64) (68) (65) (69)

L
L LE|G(D) +¢ / (62dz + C|U 3| F e
(67) "
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L
<§Arm%x+cuM*M+¢MUmmmm

o
A2

(72)
|)\|2a” H'HH HH H ”H || ||H’

for A # 0. On the other hand, from (59), it follows that

_ Yt fa

L

C
(73) ¢ . = / 6?dz < — (IUlF + IFI%) -
iA 0 ’)\|

Then, if we use (73) in the inequality (72), we get

e C
eu(L) +e6(L) < C(IAP72* + 1) U2 Fll2 + WHUH%

¢
|)\‘20¢

(74)
+

C
Ul Fllw + WHFH%{ +C|IF|F
Now, we multiply (59); by ¢ and integrate in (0, L), in order to obtain
L L L L L
(75) i / bddz — 6 / s / uepdr + € / dbdz = J / fsdda.
0 0 0 0 0
Combining (59), and (75), it results

—6/0L¢m¢d:v+b/0Lux¢dx+§/oL|¢|2d;v

L L L
_ 2 -
—J/O )| dac—i—J/O f5¢dm+J/0 Y fadz.

Integrating by parts and using the boundary conditions, we have
L L L
5/ |pe|2da + b/ uxgbdamrf/ |p|2dx
0 0 0
L L B B
=7 [ WPde T [ Fi+ fia)de + B(L)0D)

L L
<J/O !¢|2dx+e]/0 (D11 fal + [f5]|ol)dx + (L) P (L)],

using Young’s inequality, comes

L L L
6/|mﬁmwb/‘%@m+s/\w%x
0 0 0

1 1
< Ceg(L) + ClNU I Pl + S16(L)* + S da (L),
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Then, using the inequalities (67) and (69) it follows that
L L L

5/ ](bm\gdas—l—b/ ux¢da:+g/ |¢|*dw
0 0 0

< Cey(L)

(76)
c c o
MYER [UN [l + CNU [l Fll + e 1F]15-

Finally, we multiply (59), by @, and we integrate in (0, L), obtaining

L L L L
i)\p/ vudr — /J,/ UgprUdr — b/ ¢rudr = p/ foudz,
0 0 0 0
that is

L L L L
—p/ vidudzr — M/ UgppUdT — b/ orudr = p/ foudz.
0 0 0 0

From (59),, we get

L L L L L
—u/ UgrUdT — b/ G udr = p/ lv|2da + p/ foudx + p/ v fidz,
0 0 0 0 0

from where, we obtain

L L L L
/ ]um\Qdaz—i—b/ qﬁuxdx:p/ ]v|2dx+,0/ (Fi+ fot)da+ pii( L) ua (L),
0 0 0 0
thus

L L L
/ g 2da b / pizdz < Ceu(L)4p / (oIl fa || ol [l -t (T o (D)
0 0 0

Young’s inequality gives

r 2 b ¢ p 2, 1 2
| tuslatd [ e < Ceu Dy W Il Pl D P4 e (D,

and from inequalities (66) and (68), we obtain

L L
/ |ux]2dx—|—b/ Puzdr
(77) 0 0

C
< Ceu(L) 1Ul3l[E Nl + ClIU N Fll2 +

2
+ S | ]|

C
W\
Adding the inequalities (76) and (77), we find

L L L L
/ |ux|2dx—|—b/ (¢Uz+ux¢)dx+€/ |<b|2dx+5/ || *dac
(78) 0 0 0 0

C C
< Ceu(L) + (L)) + WIIUHHIIFIIH + CIU [l Fllw + WIIFII%-

Therefore, from (61), (74) and (78), we conclude that

C C
U113 < C (eu(L) + £o(L)) + WHUHHHFHH + ClIU#l Fllw + WHFII%’
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that is
% C
113 < C (NP2 + 1) U ||l Flloe + WIIUH?{

C C
_— F -

For A # 0 and applying Young’s inequality, we get the following result
U153, < CIAFA= I,

1F13, + ClIFI-

that is
Ul < CIAPY=|[Fllag, YU € D(A),
which is equivalent to
|(GA] — A) " F |y
1l
for some positive constant C. The conclusion follows from Theorem 5. [

SOPPI = [GAL = A) Ml < ORI,

7. CONCLUSIONS

Properties of a one-dimensional poroelastic system, such as the existence
and uniqueness of solution, strong stability, and polynomial stability, were
analyzed. It was shown that the Cy-semigroup associated with the system
(4)—(7), although without internal dissipation, presents strong stability due
to the presence of two dissipative mechanisms at the boundary, based on
fractional derivatives. Furthermore, it was proven that the system decays
polynomially with a rate of t~1/2(0=®) ag seen in Sections 5 and 6, respec-
tively. Some issues may be considered, such as: In Theorem 6, the decay
rate of order t71/2(0=9) ig obtained. It is interesting to prove that this de-
cay rate is optimal by the Borichev-Tomilov theorem. The decay rate in
the case 7 = 0 is an open question. Since A = 0 is a spectral value, the
Borichev-Tomilov theorem does not apply. Other methods can be tested, in
particular, observability theory. Another technique is the Laplace transform
and the representation of solutions by Mittag-Leffler functions.
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